
Is Now Part of

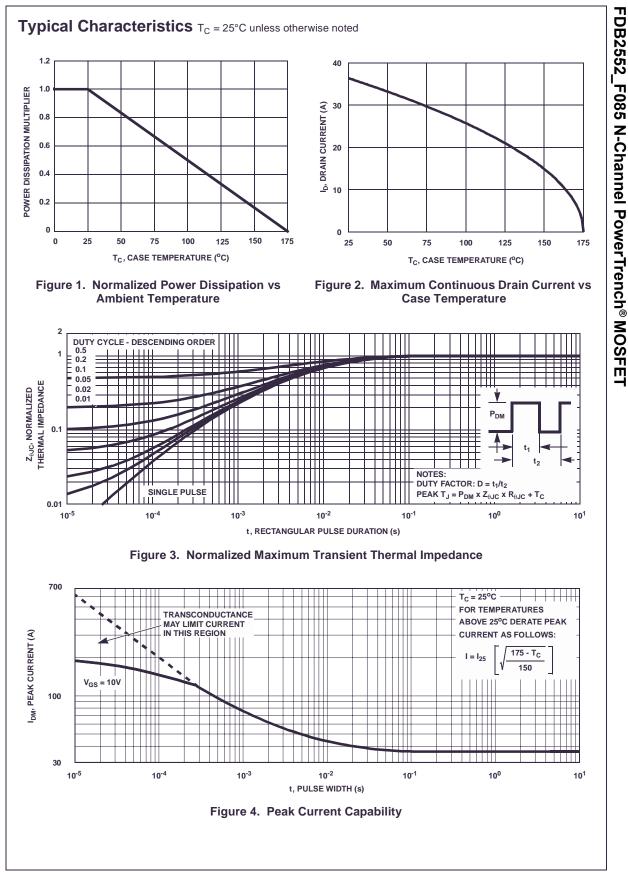
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

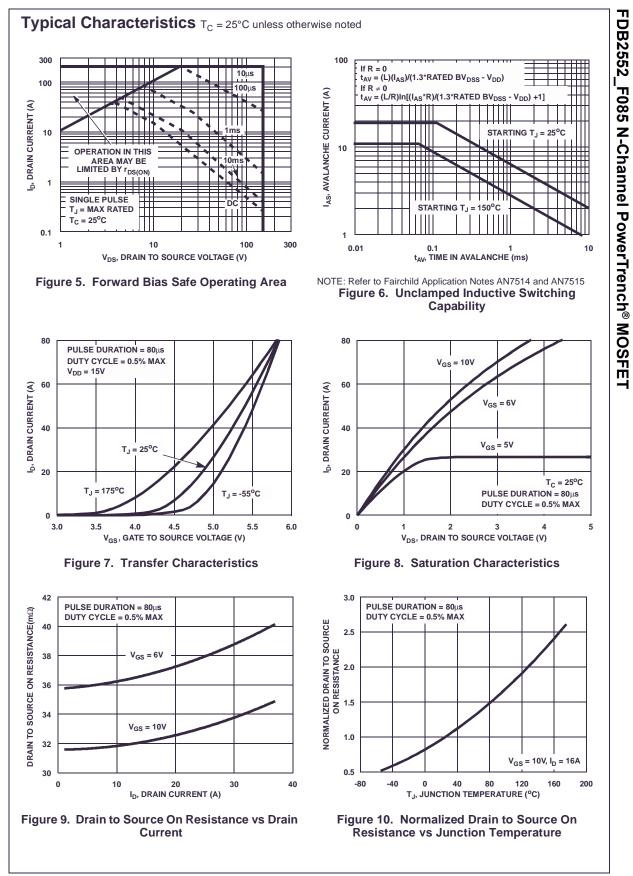
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

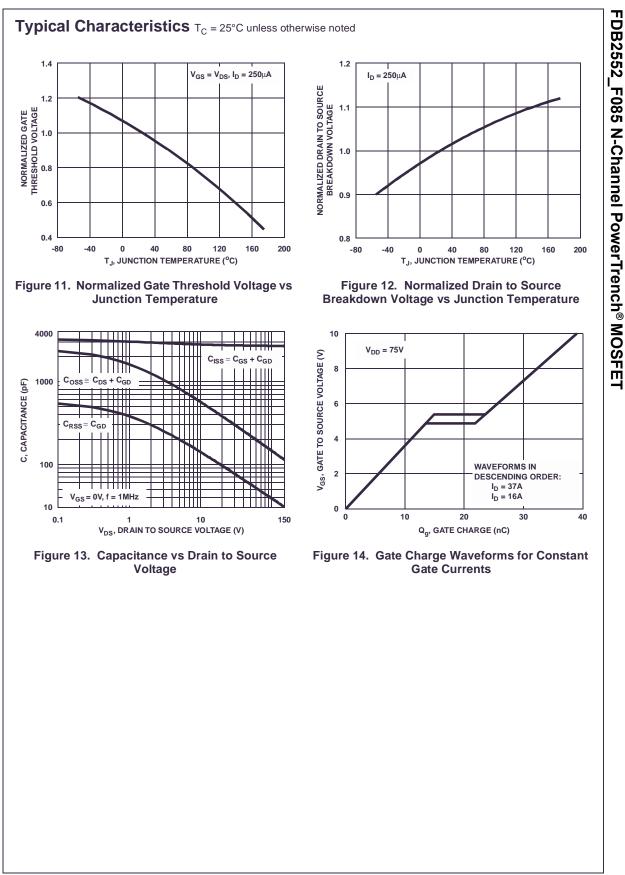
- Direct Injection / Diesel Injection Systems
- 42V Automotive Load Control
- Electronic Valve Train Systems •


MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units V	
V _{DSS}	Drain to Source Voltage	150		
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current Continuous (T _C = 25° C, V _{GS} = 10V)	37	А	
I _D	Continuous ($T_C = 100^{\circ}C$, $V_{GS} = 10V$)	26	А	
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$) with $R_{\theta JA} = 43^{\circ}C/W$	5	А	
	Pulsed	See Figure 4	А	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	390	mJ	
P _D	Power dissipation	150	W	
	Derate above 25°C	1.0	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	


Thermal Characteristics

$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case TO-220, TO-263	1.0	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-220, TO-263 (Note 2)	62	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area	43	°C/W


EDB	Marking	Device	Package	Reel Size	Tape V	Nidth	Quar	ntity
FDB2552		FDB2552_F085	TO-263AB	330mm	24mm		800 units	
Electric	al Char	acteristics T ₂ - 25	°C unless otherwi	se noted				
Symbol	Cal Characteristics T _C = 25°C			Test Conditions		Min Typ		Unit
Off Chara	cteristics	5						
B _{VDSS}	Drain to Source Breakdown Voltage		I _D = 250μA,	I _D = 250μA, V _{GS} = 0V		-		V
I _{DSS}	Zero Gate	Voltage Drain Current	V _{DS} = 120V V _{GS} = 0V		-	-	1 250	μA
I _{GSS}	Gate to Source Leakage Current		V _{GS} = ±20V		-	-	±100	nA
	cteristics		00					
V _{GS(TH)}	-	ource Threshold Voltage	$V_{GS} = V_{DS},$	$l_{p} = 250 \mu A$	2	-	4	V
G3(1H)			$I_{\rm D} = 16A, V_{\rm C}$		-	0.032	0.036	
r _{DS(ON)}	Drain to S	ource On Resistance	$I_D = 16A, V_0$ $I_J = 175^{\circ}C$		-	0.084	0.097	Ω
C _{OSS}	Output Ca		V _{DS} = 25V, f = 1MHz	$V_{DS} = 25V, V_{GS} = 0V,$		285	-	pF
Dynamic C _{ISS}	Input Capa				-	2800	-	pF
	Output Ca	pacitance				285	-	pF
C _{RSS}	Reverse T	ransfer Capacitance	1 - 1101112		-	55	-	pF
Q _{g(TOT)}	Total Gate	e Charge at 10V	$V_{GS} = 0V to$	10V		39	51	nC
Q _{g(TOT)} Q _{q(TH)}	-	Charge at 10V Gate Charge			-	39 5.2	51 6.8	nC nC
Q _{g(TH)}	Threshold	Gate Charge		2V V _{DD} = 75V	-		-	
Q _{g(TH)} Q _{gs}	Threshold Gate to So	Gate Charge burce Gate Charge				5.2	6.8	nC nC
Q _{g(TH)} Q _{gs} Q _{gs2}	Threshold Gate to So Gate Char	Gate Charge burce Gate Charge rge Threshold to Plateau		2V V _{DD} = 75V I _D = 16A	-	5.2 13.5	6.8	nC
Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd}	Threshold Gate to So Gate Char Gate to Dr	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge		2V V _{DD} = 75V I _D = 16A	-	5.2 13.5 8.4	6.8 - -	nC nC nC
Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd} Switching	Threshold Gate to So Gate Char Gate to Dr	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V)		2V V _{DD} = 75V I _D = 16A	-	5.2 13.5 8.4	6.8 - -	nC nC nC
Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd} Switching	Threshold Gate to So Gate Char Gate to Dr g Charact Turn-On T	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V)		2V V _{DD} = 75V I _D = 16A	-	5.2 13.5 8.4 8.3	6.8 - -	nC nC nC
$\begin{array}{c} \mathbf{Q}_{g(TH)} \\ \mathbf{Q}_{gs} \\ \mathbf{Q}_{gs2} \\ \mathbf{Q}_{gd} \\ \textbf{Switching} \\ \mathbf{t}_{ON} \\ \mathbf{t}_{d(ON)} \end{array}$	Threshold Gate to So Gate Char Gate to Dr g Charact Turn-On T Turn-On D	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) time Delay Time	V _{GS} = 0V to	$2V$ $V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$	- - -	5.2 13.5 8.4 8.3 - 12	6.8 - -	nC nC nC nC nS
$\frac{Q_{g(TH)}}{Q_{gs}}$ $\frac{Q_{gs2}}{Q_{gd}}$ Switching $\frac{t_{ON}}{t_{d(ON)}}$	Threshold Gate to So Gate Char Gate to Dr g Charact Turn-On T Turn-On D Rise Time	Gate Charge ource Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) ime Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - -	5.2 13.5 8.4 8.3 - 12 29	6.8 - - - - 62 -	nC nC nC nC nS ns
$\frac{Q_{g(TH)}}{Q_{gs}}$ $\frac{Q_{gs2}}{Q_{gd}}$ Switching $\frac{t_{ON}}{t_{d(ON)}}$ $\frac{t_{d(OFF)}}{t_{d(OFF)}}$	Threshold Gate to Sc Gate Char Gate to Dr Charact Turn-On T Turn-On D Rise Time Turn-Off D	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) time Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - -	5.2 13.5 8.4 8.3 - 12 29 36	6.8 - - - - 62 - -	nC nC nC nC nS ns ns
Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{0N} t _{d(ON)} t _r t _{d(OFF)} t _f	Threshold Gate to So Gate Char Gate to Dr Charact Turn-On T Turn-On D Rise Time Turn-Off D Fall Time	Gate Charge burce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) Time Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - - - - -	5.2 13.5 8.4 8.3 - 12 29	6.8 - - - 62 - - - - - -	nC nC nC nC nS ns ns ns
$Q_{g(TH)}$ Q_{gs} Q_{gs2} Q_{gd} Switching t_{0N} $t_{d(ON)}$ t_r $t_{d(OFF)}$ t_f t_f t_{OFF}	Threshold Gate to So Gate Char Gate to Dr Charact Turn-On T Turn-On D Rise Time Turn-Off D Fall Time Turn-Off T	Gate Charge purce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) Time Delay Time Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - - - - -	5.2 13.5 8.4 8.3 - 12 29 36	6.8 - - - - 62 - -	nC nC nC nC nS ns ns ns
$\frac{Q_{g(TH)}}{Q_{gs}}$ $\frac{Q_{gs2}}{Q_{gd}}$ Switching $\frac{t_{ON}}{t_{d(ON)}}$ $\frac{t_{d(OFF)}}{t_{f}}$ $\frac{t_{d(OFF)}}{t_{OFF}}$ Drain-Sou	Threshold Gate to So Gate Char Gate to Dr Charact Turn-On D Rise Time Turn-Off D Fall Time Turn-Off T	Gate Charge purce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) Time Delay Time Delay Time Delay Time Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - - - - -	5.2 13.5 8.4 8.3 - 12 29 36	6.8 - - - 62 - - - - - -	nC nC nC nC nC nS ns ns ns ns
$Q_{g(TH)}$ Q_{gs} Q_{gs2} Q_{gd} Switching t_{0N} $t_{d(ON)}$ t_r $t_{d(OFF)}$ t_f t_f t_{OFF}	Threshold Gate to So Gate Char Gate to Dr Charact Turn-On D Rise Time Turn-Off D Fall Time Turn-Off T	Gate Charge purce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) Time Delay Time Delay Time	V _{GS} = 0V to	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - - - - - - - - - - - - - - -	5.2 13.5 8.4 8.3 - 12 29 36 29 -	6.8 - - - - 62 - - - - - 97	nC nC nC nC nS ns ns ns ns ns
$\frac{Q_{g(TH)}}{Q_{gs}}$ $\frac{Q_{gs2}}{Q_{gd}}$ Switching $\frac{t_{ON}}{t_{d(ON)}}$ $\frac{t_{d(OFF)}}{t_{f}}$ $\frac{t_{d(OFF)}}{t_{OFF}}$ Drain-Sou	Threshold Gate to So Gate Char Gate to Dr Charact Turn-On T Turn-On D Rise Time Turn-Off D Fall Time Turn-Off T VICE DioC Source to Reverse R	Gate Charge purce Gate Charge rge Threshold to Plateau rain "Miller" Charge teristics (V _{GS} = 10V) Time Delay Time Delay Time Delay Time Delay Time	$V_{GS} = 0V \text{ to}$ $V_{DD} = 75V,$ $V_{GS} = 10V,$ $I_{SD} = 16A,$ $I_{SD} = 16A, \text{ or}$	$V_{DD} = 75V$ $I_D = 16A$ $I_g = 1.0mA$ $I_D = 16A$	- - - - - - - - - - - - - - - - - - -	5.2 13.5 8.4 8.3 - 12 29 36 29 - -	6.8 - - - 62 - - - 97 1.25	nC nC nC nC nS ns ns ns ns vs

©2012 Fairchild Semiconductor Corporation FDB2552_F085 Rev. B1

©2012 Fairchild Semiconductor Corporation FDB2552_F085 Rev. B1

©2012 Fairchild Semiconductor Corporation FDB2552_F085 Rev. B1

Thermal Resistance vs. Mounting Pad Area

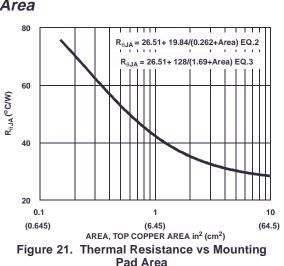
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

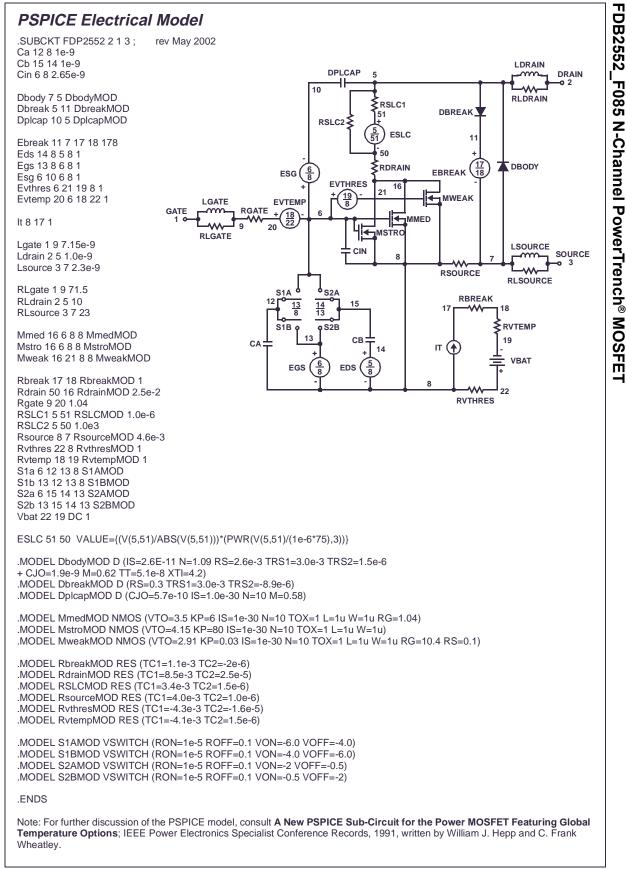
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

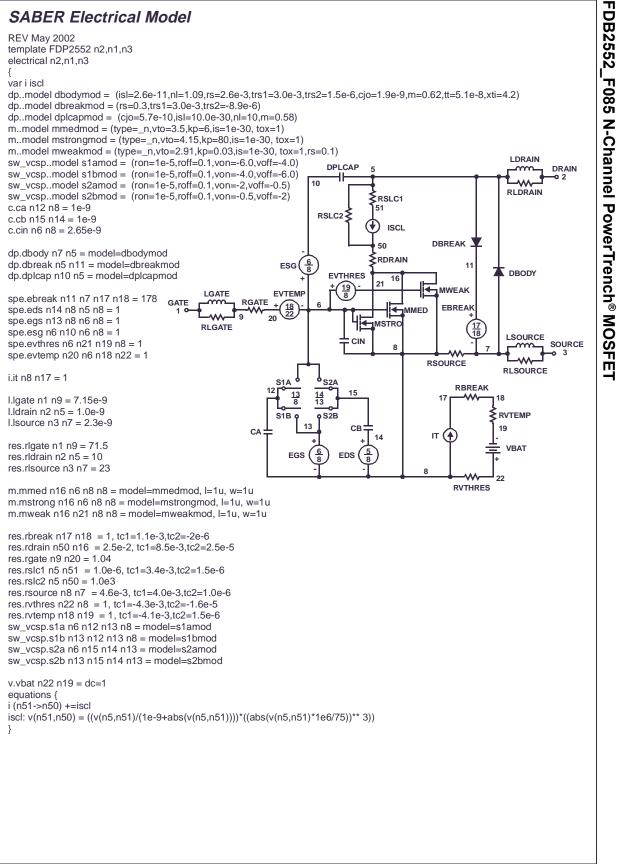
- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

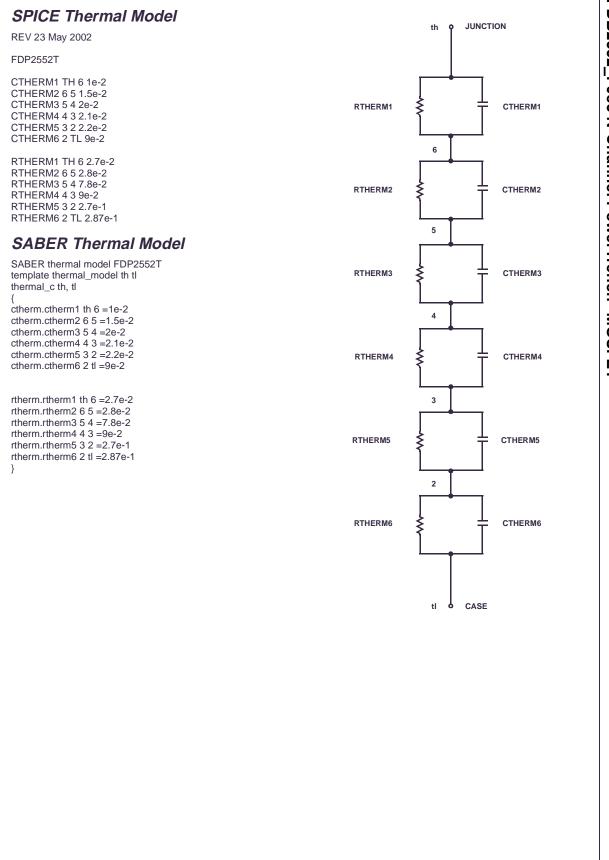
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.


Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.


$$R_{\theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
(EQ. 2)

Area in Inches Squared


$$R_{\theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
(EQ. 3)


Area in Centimeters Squared

SABER Electrical Model

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list of	all such trademarks.		
2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the
AX-CAP™*	Global Power Resource SM	Programmable Active Droop [™]	puwer
BitSiC [®]	Green Bridge™	QFET®	franchise TinyBoost™
Build it Now™	Green FPS [™]	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series [™]	TinyBuck™
CorePOWER™	G <i>max</i> ™	RapidConfigure™	TinyCalc™
CROSSVOLT™	GTO™	TM S	TinyLogic®
CTL™	IntelliMAX™		
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPower™
DEUXPEED®	Marking Small Speakers Sound Louder		TinyPWM™
Dual Cool™	and Better™	SmartMax™	TinyWire™
EcoSPARK [®]	MegaBuck™	SMART START™	TranSiC®
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TriFault Detect™
ESBC™	MicroFET™	SPM®	TRUECURRENT®*
	MicroPak™	STEALTH™	μSerDes™
	MicroPak2™	SuperFET®	μ
Fairchild [®]	MillerDrive™	SuperSOT™-3	SerDes"
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-6	UHC [®]
FACT Quiet Series™	Motion-SPM [™]	SuperSOT™-8	Ultra FRFET™
FACT Quiet Series	mWSaver™	SupreMOS [®]	UniFET™
FAST®	OptoHiT™	SyncFET™	VCX™
FastvCore™	OPTOLOGIC®	Sync-Lock™	VisualMax™
FETBench™	OPTOPLANAR®		VoltagePlus™
FlashWriter [®] *		SYSTEM	XS™
FIASHWITTEI * FPS™	@ @	GENERAL	
FF0			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1 Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC